## QUIZ 22 SOLUTIONS: LESSONS 29 \& 30 NOVEMBER 14, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

1. [5 pts] Find the average value of $f(x, y)=4 x^{2} y^{3}$ over the triangle with vertices $(0,0), \quad(1,0), \quad(1,1)$.
Solution: We sketch a picture of the region:


The line which connects $(0,0)$ and $(1,1)$ is the line $y=x$. Hence, our region is described by

$$
\begin{aligned}
& 0 \leq y \leq x \\
& 0 \leq x \leq 1
\end{aligned}
$$

Further, we are asked for the average of the function $f(x, y)=4 x^{2} y^{3}$ which means we need to find the area of $R . R$ is half of a square of length and height equal to 1 . Thus, the area of $R$ is $1 / 2$. We write

$$
\begin{aligned}
\text { Average Value } & =\frac{1}{\text { Area of } R} \iint_{R} 4 x^{2} y^{3} d A \\
& =\frac{1}{\frac{1}{2}} \int_{0}^{1} \int_{0}^{x} 4 x^{2} y^{3} d y d x
\end{aligned}
$$

$$
\begin{aligned}
& =2 \int_{0}^{1} \int_{0}^{x} 4 x^{2} y^{3} d y d x \\
& =\left.2 \int_{0}^{1} x^{2} y^{4}\right|_{y=0} ^{y=x} d x \\
& =2 \int_{0}^{1} x^{2} x^{4} d x \\
& =2 \int_{0}^{1} x^{6} d x \\
& =\left.\frac{2}{7} x^{7}\right|_{0} ^{1} \\
& =\frac{2}{7}
\end{aligned}
$$

2. [5 pts] Put the following matrix into row-echelon form:

$$
\left[\begin{array}{rrr|r}
1 & 1 & 0 & 2 \\
1 & 2 & 1 & -1 \\
-1 & 3 & -4 & 0
\end{array}\right]
$$

Show your work and label each row operation you use.
Solution: There are several different ways of putting this matrix into row-echelon form. I outline one path below:

$$
\begin{gathered}
\xrightarrow{-R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
0 & 1 & 1 & -3 \\
-1 & 3 & -4 & 0
\end{array}\right] \xrightarrow{R_{1}+R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
0 & 1 & 1 & -3 \\
0 & 4 & -4 & 2
\end{array}\right] \\
\xrightarrow{-4 R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
0 & 1 & 1 & -3 \\
0 & 0 & -8 & 14
\end{array}\right] \\
\xrightarrow{-R_{3} / 8 \rightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
0 & 1 & 1 & -3 \\
0 & 0 & 1 & -7 / 4
\end{array}\right]
\end{gathered}
$$

Note that any matrix of the form

$$
\left[\begin{array}{ccc|c}
1 & a & b & (13-5 a-7 b) / 4 \\
0 & 1 & c & (-5-7 c) / 4 \\
0 & 0 & 1 & -7 / 4
\end{array}\right]
$$

is also correct.

